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Abstract: Dicthyl L-glutantaie hydrochloride (3) was converted tu its N-pyrrole derivative 5. Submission of5 to bu- 
4 tyryl chloride in boiling toluene gave the 2-butyryi derivative, and by treatment with NaBH3CN and Znl2. the 2-butyl 

analogue 9. Cyclization qf9 with BBr3 @orded (ZS)-3-b~l-S-etL,xyc‘Nrbonyl-S,6-~h~~r~~~(7H)~nd~~~izinane (IO). 
Hydrogenation of IO over P&C in acidified EtOH Rave (JSSS,9R)-3-brttyl-S-etho~r~~nylindulne. By succes- 

sive reduction of the latter to the primary alcohol, formarion of the rhbride and reductive dechlorination with tri- 
buryltin hydride, (3SSR.9R)-3-bulyi-S-mt~linduliddine. or (-)-monomorine, was obtained in 8 steps from 3 in a 

yield of 25%. 

The indolizidine alkaloids have excited much interest on account of their exotic provenance and potent 

biological activity.1 Unfortunately, they are only isolable in minuscule amounts from natural sources. Conse- 

quently, many methods have been devised for their synthesis. 2 A pertinent example is (+)-monomorine (1). 

the trail-laying pheromone of the Pharaoh ant, Monomorium pharuonis L. So far, six strategies, of varying 

length and efficiency, have been formulated. One involves asymmetric deprotonation of N-benzyloxycar- 

bonylnortropinone,4 while the others exploit the innate chiiality of diethyl L-tartrate,s~6 S-pyroglutamic acid,7 

and L-alanines as starting materials. 

We now describe a new synthesis of the non-natural antipode, (-)-monomorine (2).1* which exemplifies 

an improved procedure for constructing enantiomerically pure indolizidines by the intramolecular acylation of 

a suitable N-substituted pyrrole and the substituent-directed hydrogenation of the resulting bicyclic 

intemtediate.tt In the present instance, the enantiogenic chirality was provided by diethyl L-glutamate hy- 

drochloride (3).t2,13 Its condensation with 2,5-dimethoxytetrahydrofuran (4) in warm water readily furnished 

the optically pure N-pyrrole derivative 5 in 62% yield (Scheme l&t1 The future butyl group was then intro- 

duced by adding an equivalent of trifluoromethanesulfonic acid (TfOH) to a mixture of 5 and butyryl chlo- 

ride.14 Reaction was instantaneous and exothetic giving the desired 2-butyryl derivative 6. but also the 3- 

substituted isomer 7, in yields of 60 and 30% respectively. t5 Although chromatogcaphic separation was en- 

tirely feasible,‘6 heating 5 with excess butyryl chloride alone in toluene for 100 hours proved simplert7 and 

gave 6 in 68% yield with no detectable trace of 7. the thermodynamically favored isorner.**~t9 Next, direct 

closure to the bicyclic diketone 8 was attempted. However, the action of 1.1 equivalents of boron tribromide 

on 6 was without any effect, owing, no doubt, to deactivation of the pyrrole ring by the acyl substituent. 
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Consequently, the more nucleophilic butylated analogue 9 was prepared from 6 in 81% yield by reductive de- 

oxygenation20 with sodium cyanoborohydride and zinc iodide in 12-dichloroethane (Scheme 2). Subsequent 

treatment of 9 with 1.1 equivalents of boron tribromide for just 15 minutes was successful. Intramolecular 

acylation to the bicyclic keto pyrrole 10 occurred regioselectively with complete retention of configuration in 

96% yield. 
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The crucial process of hydrogenating 10 was accomplished over palladium-on-charcoal in slightly acidi- 

fied ethanol solution.21 After 7.5 hours of reaction time, it was reduced to (3SSS,9R)-3-butyl-5-ethoxycar- 

bonyliidolizidine (11) in quantitative yield.22 In keeping with precedent,gvt1*t2 saturation of the pyrrole ring 

took place in an all-cis manner, being totally controlled by the stereogenic center. At the same time, the acidic 

conditions were conducive to removal of the benzylic carbonyl group by hydrogenolysis.23,U 
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All that remained was the transformation of the remaining ester group into the 5-methyl substituent by a 

standard procedure.” The action of lithium aluminum hydride on 11 afforded the alcohol 12, which was con- 

verted in situ to the chloride 13. Finally, by reductive dechlorination of 13 with tributyltin hydride, (-)- 

monomorine (2) was obtained in 76% yield as a single isomer. 25 It was spectroscopically identical and opti- 

cally congruent with those previously pre~ared.~~ 
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The present synthesis of 2, compared with the others,4-10 is short and practical requiring only eight sun- 

ple operations to deliver enantiomerically pure product in an overall yield of 25%. Applications of this N-sub- 

stituted pyrrole methodology for synthesizing other naturally occurring indolizidiies are foreseeable and will 

be disclosed in due course. 
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